
ABSTRACT

Triple-negative (TN) and basal-like (BL) breast cancer defini-
tions have been used interchangeably to identify breast
cancers that lack expression of the hormone receptors and
overexpression and/or amplification of HER2. However,
both classifications show substantial discordance rates
when compared to each other. Here, we molecularly char-
acterize TN tumors andBL tumors, comparing and contrast-
ing the results in terms of common patterns and distinct
patterns for each. In total, when testing 412 TN and 473 BL
tumors, 21.4% and 31.5% were identified as non-BL and
non-TN, respectively. TN tumors identified as luminal or
HER2-enriched (HER2E) showed undistinguishable overall
gene expression profiles when compared versus luminal or
HER2E tumors that were not TN. Similar findings were ob-

servedwithinBL tumors regardless of their TN status,which
suggests that molecular subtype is preserved regardless of
individual marker results. Interestingly, most TN tumors
identified as HER2E showed low HER2 expression and
lacked HER2 amplification, despite the similar overall gene
expression profiles to HER2E tumors that were clinically
HER2-positive. Lastly, additional genomic classifications
were examined within TN and BL cancers, most of which
werehighly concordantwith tumor intrinsic subtype. These
results suggest that future clinical trials focused on TN dis-
ease should consider stratifying patients based upon BL
versus non-BL gene expression profiles, which appears to
be the main biological difference seen in patients with TN
breast cancer. TheOncologist2013;18:000–000

Implications forPractice: Basal-likebreast cancer is commonly knownas triple-negative (TN)breast cancerbecause themajority
of cases lackexpressionof estrogenandprogesterone receptors andoverexpressionand/or amplificationofHER2.However, not
all TN tumors are identified as basal-like by gene expression, and not all basal-like tumors are TN. Here, we show that TN disease
is a broad and diverse category for which additional subclassifications are needed.We propose that clinical trials focused on TN
disease stratify patients based upon a tumor�s basal-like versus non-basal-like gene expression profiles, which appears to be the
main biological difference seen in patients with TN breast cancer.

INTRODUCTION

Studies based upon global gene expression analyses have
identified four main intrinsic molecular subtypes of breast
cancer knownas luminal A, luminal B, HER2-enriched [HER2E]
andbasal-like [1–4]. Thesemolecular entities have shownsig-
nificantdifferences in termsof incidence, risk factors,baseline
prognosis, age at diagnosis, and response to treatment [2–3,
5]. Among them, the basal-like subtype is of particular clinical
interest due to its high frequency, lack of effective targeted
therapies, poor baseline prognosis, and its tendency to affect
youngerwomen.

Over the years, basal-like breast cancer has becomemore
commonly known as triple-negative (TN) breast cancer be-
causethemajorityof tumorsof thismolecular subtype lackex-
pression of hormone receptors (HR) and overexpression
and/or amplification of HER2; however, not all TN tumors are

identified as basal-like by gene expression, and not all basal-
like tumors are TN [2]. In fact, as we have previously reported
using publicly availablemicroarray data, the discordance rate
between the two definitions is 20%–30% [2]. More recently,
subtyping of three large clinical trials (GEICAM/9906 [6],
MA.12 [7], andMA.5 [8]) using the PAM50qRT-PCR-based as-
say revealed that approximately 30% of tumors identified as
TN by central pathology review do not fall into the basal-like
subtype category [9]. Therefore, significant biological hetero-
geneity exists within the group of patients diagnosedwith TN
disease.

In this study, we undertook a molecular characterization
of themainmolecularentities foundwithinTNdisease, aswell
as a focused molecular characterization of basal-like tumors
that are not TN. In addition, we compared the features of the
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main intrinsic subtypes, together with the recently identified
claudin-low subtype [10] and with the six subtypes of TN dis-
ease recently identifiedbyLehmannetal. [11]. Theseanalyses
revealed many common findings that should provide biologi-
cal value for the interpretation of data coming fromTNbreast
cancer trials.

MATERIALS ANDMETHODS

Microarray Data Sets
We evaluated 12 publicly available microarray data sets
(GSE12276 [12, 13], GSE2034 [13, 14], GSE25066 [15],
GSE16716 [16], GSE20194 [17], GSE23988 [18], MDACC133
[19], GSE18229 [10], GSE20711 [20], GSE2109 [21], GSE2603
[22], and GSE19615 [23]), each of which provided annotated
clinical-pathological data. Rawdata files fromeachAffymetrix
(Santa Clara, CA) microarray-based cohort were normalized
using MAS5 and replicates samples removed. The probes of
theGSE18229Agilent-based cohortwere filteredby requiring
the Lowess normalized intensity values in both sample and
control to be �10. The normalized log2 ratios (Cy5 sample/
Cy3 control) or log2 intensity of probes mapping to the same
gene (entrez ID as defined by the manufacturer) were aver-
aged to generate independent expression estimates. In each
cohort, genesweremediancenteredandstandardizedtozero
mean and unit variance. Finally, samples without clinical-
pathological annotation regarding estrogen receptor (ER) sta-
tus, progesterone receptor (PR) status, and HER2 status were
excluded, leaving a total of 1,703 samples with microarray
data and known ER/PR andHER2 status.

CombinedMicroarray Data Set
Of the 12 normalized gene/row median-centered and stan-
dardized data sets evaluated, seven (GSE20194 [17],
MDACC133 [19], GSE18229 [10], GSE20711 [20], GSE2109
[21], GSE2603 [22], and GSE19615 [20]) were successfully
combined into a single gene expression microarray matrix of
1,005samples (including17normalbreast samples)and7,722
entrez ID genes in common. Loading plots of the twoprincipal
components were evaluated to exclude important batch ef-
fects (supplemental online Fig. 1).

Gene ExpressionMolecular Subtyping
To be consistent with our previous studies, the PAM50 intrin-
sic subtypeclassifierwasusedasdescribed inParkeret al. [24]
to determine the subtype calls (luminal A, luminal B, HER2E,
basal-like, and normal-like) of each individual sample within
each cohort. For samples in data sets GSE18229, GSE12276
and GSE2034, we used the previously reported subtype calls
[10,13].Additionally, in thecombinedmicroarraydataset,we
also explored the identification of the claudin-low subtype
[10]. To do so, we applied a 9-cell line claudin-low predictor
[10], rank ordered the samples based on the Euclidian dis-
tance ratio to the “others” centroid versus the “claudin-low”
centroid,andthen identifiedthetop10%of tumorsasclaudin-
low.

To identify themolecular subtypesofTNbreast cancer,we
used the list published by Lehmann et al. [11] of 2,188 genes
that classifies TN tumors into six classes (immunomodulatory
[IM], basal-like 1 [BL1], basal-like 2 [BL2], mesenchymal [M],
mesenchymal stem-like [MSL], and luminal androgen recep-
tor [LAR]). This gene listwasused inahierarchical cluster anal-

ysis, with the six groups identified based upon the cluster-
associated dendrogram and the genes that defined each of
the groups.

The Cancer GenomeAtlas Data Set
Gene expression, DNA copy number, reverse-phase protein
array (RPPA), and mutational data were obtained from The
Cancer Genome Atlas (TCGA) website (http://cancergenome.
nih.gov/) [25]. PAM50 subtype calls, ER/PR status, and HER2
statuswere used as provided from TCGA.

Microarray of Human Breast Samples and Cell
LineModels
All human tumor and normal tissue samples were collected
using protocols approved by the institutional review board.
Samples were obtained from fresh frozen breast specimens.
In vivo and in vitro humanbreast cancer and immortalizedhu-
man mammary epithelial cell lines (HME-CC, BT474, BT483,
BT549, CAMA-1, HCC1143, HCC1187, HCC1395, HCC1428,
HCC1500, HCC1937, HCC1954, HCC38, Hs578T, MCF7,
MDAMB231, MDAMB361, MDAMB415, MDAMB435,
MDAMB436, MDAMB453, MDAMB468, ME16C, SKBR3,
SUM102, SUM1315, SUM149PT, SUM159PT, SUM90PT,
T47D, UACC812, ZR75–1, MDA-IBC3, DU4775) were cultured
as suggestedbyproviders. Threeprimary tumorbreast cancer
xenografts (HIM2 [26], HIM5 [26], and HIM12), grown in im-
munocompromised mice, were also assayed by microarray.
RNAwas purified using the RNeasyMini kit. All samples were
profiled as previously described using oligo microarrays (Agi-
lent Technologies, Santa Clara, CA) [25], and microarray and
patient clinical data are available in the University of North
Carolina Microarray Database and have been deposited in
the Gene Expression Omnibus under the accession number
GEO:GSE41119. The probes of the GSE41119 Agilent-based
cohort were filtered by requiring the Lowess normalized in-
tensity values in both sample and control to be �10. The
normalized log2 ratios (Cy5 sample/Cy3 control) or log2 in-
tensity of probes mapping to the same gene (entrez ID as
defined by the manufacturer) were averaged to generate
independent expression estimates, and genes were me-
dian centered and standardized to zeromean and unit vari-
ance. PAM50 and claudin-low subtyping was performed as
described above.

Statistical Analysis
All microarray cluster analyses were displayed using Java
Treeview version 1.1.4r2 [27]. Average-linkage hierarchical
clustering was performed using Cluster v3.0 [27]. Biologic
analysis ofmicroarray datawas performedwith theDatabase
for Annotation, Visualization, and IntegratedDiscovery anno-
tationtool [28].Unpairedtwo-classsignificanceanalysisofmi-
croarrays (SAM) was used to identify differentially expressed
genes between subtypes [29]. Analysis of variance and Stu-
dent’s t tests for gene expression data were done using R
2.10.1 (http://www.r-project.org/).

RESULTS
In this section, we refer to the various combinations of the
two main clinical phenotypes (TN versus non-TN) and the
various molecular intrinsic subtypes using the format
shown in Figure 1. For example, the two main clinical phe-
notypes of basal-like tumors will be defined as basal-
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like/TN and basal-like/non-TN, whereas the two main
molecular intrinsic subtypes of TN tumorswill be defined as
TN/basal-like and TN/non-basal-like.

Distribution of theMain Intrinsic SubtypesWithin TN
Breast Cancer
Weevaluated data from12publicly availablemicroarray data
setswithknownER,PR, andHER2clinical status (n�1,703). In
each individual data set, we applied the PAM50 subtype pre-
dictor and classified tumors as luminal A, luminal B, HER2E,
basal-like, and normal-like. The overall concordance rate was
found to be 79% (� � 0.62) between the immunohistochem-
istry (IHC)-based and PAM50 subtype definitions (luminal A
and B tumors combined and normal-like cases excluded be-
cause this group is likely contaminated with true normal
breast tissue). Among 412 TN tumors, 78.6%were identified
as basal-like, 7.8% as HER2E, 6.6% as luminal, and 7.0% as
normal-like (Fig. 2). This PAM50 subtypedistributionwithin
TN tumors is similar to the distribution reported across
three large clinical trials with centrally reviewed IHC-based
and PAM50-based data [9]. Conversely, within 473 basal-
like tumors, 68.5% were identified as HR�/HER2�, 18.2%
as HR�/HER2�, 10.6% as HR�/HER2�, and 2.7% as HR�/
HER2�.

Triple-Negative Subtype-Specific Gene Expression
Features
To identify geneswhoseexpression characterizes the luminal,
HER2E, and basal-like subtypes within TN breast cancer only,
weperformeda three-class SAMwitha false-discovery rateof
0%andobtaineda listof1,510genes (supplementalonlineTa-
ble 1). Clustering of these genes across these three intrinsic
subtypes using only TN disease samples revealed six main
gene clusters (Fig. 3, supplemental online Fig. 2). As expected,
TN/luminal tumors showed high expression of estrogen-re-

lated andpreviously identified luminal genes (p� .0001) such
asESR1,PGR,MUC1,andGATA3,and lowexpressionofcell cy-
cle-relatedgenes (p� .0001) suchasKI67andaurorakinaseB.
Conversely, TN/HER2E tumors showed an overall intermedi-
ate gene expression compared to the other two subtypes, ex-
cept for a gene cluster that included high expression of genes
involved in oxidation reduction-related biological processes
(p� .0001), suchas isocitratedehydrogenase1, fattyacidsyn-
thase, and superoxide dismutase 1 (SOD1).

A large set of genes defined the TN/basal-like tumors, in-
cluding previously known basal epithelial cell genes such as
keratin 14 and ID4, and a large set of proliferation associated
genes including FOXM1. Finally, we identified a subcluster of
luminal-like genes, including the androgen receptor (AR),
FOXA1, E-Cadherin, and keratin 18, which was similarly and
highly expressed in TN/luminal and TN/HER2E tumors com-
pared to TN/basal-like tumors. Overall, this data suggested
that TN disease is biologically heterogeneous, and that all the
main gene expression features of the intrinsic molecular sub-
typesaremaintainedevenwhenstartingwith this clinically re-
stricted subset.

Figure1. Representativealgorithmof thetwomainclinicalphenotypes (triple-negativeversusnon-triple-negative)andthevariousmo-
lecular intrinsic subtypes analyzed in this study. The gene expression heatmap represents the 50 genes of the PAM50 subtype predictor
and the PAM50microarray training data set.

Abbreviation: TN, triple-negative.

Figure 2. Distribution of the intrinsic molecular and pathology-
based subtypeswithin triple-negative and basal-like tumors.

Abbreviations: HR, hormone receptor; TNBC, triple-negative
breast cancer.
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Triple-Negative Versus Non-Triple-Negative Subtype-
Specific Gene Expression Features
To address how different non-TN versus TN tumors of a com-
monsubtypeare (i.e., luminal/TNversus luminal/non-TN),we
identified differentially expressed genes between TN and
non-TN tumors within a given subtype using the 7,722 avail-
able genes of the combined microarray data set of 1,005 tu-
mors with known ER, PR, and HER2 status.Within the luminal
A and luminal B subtypes, no differentially expressed gene
was identified between TN (n� 26) and non-TN (n� 553) tu-
mors, whereas only 13 (0.2%) and 18 (0.23%) genes were
found differentially expressed between TN and non-TN tu-
morswithin basal-like (n� 164 vs. n� 82) andHER2E (n� 17
and n� 106) subtypes, respectively (supplemental online Ta-
bles 2, 3).

The five genes found significantly downregulated in
HER2E/TN compared to HER2E/non-TN were all found in the
17q11–13 amplicon (HER2/ERBB2, GRB7, MED1, SCGB2A2
and STARD3). Thus, aside from the genes on the HER2 ampli-
con, almost nodifferences existed between subtypematched
TN vs. non-TN tumorswhen tested on themRNA level.

Expression of SelectedGenes Across the Subtypes
Based on Their TN Status
These results suggest that theoverall geneexpressionprofiles
of the PAM50 subtypes are undistinguishable regardless of
their clinical ER,PR,andHER2status,particularlyTNstatus. In-

deed, clustering of the 1,005 tumors using the PAM50 genes
revealed that luminal/TN and HER2E/TN tumors show very
similaroverallPAM50geneexpressionpatternsasdo luminal/
non-TN and HER2E/non-TN tumors, with extensive intermin-
gling (Fig. 4, supplemental online Table 4). Similarly, basal-
like/TN tumors showed undistinguishable PAM50 gene
expression patterns relative to basal-like/non-TN.

To more precisely test these findings, we evaluated the
expression of important selected genes across the sub-
types and based on the TN status of the tumors. For exam-
ple, ESR1 and PGR expression in luminal/TN tumors were
foundhigh andnot statistically differentwhen compared to
luminal/non-TN tumors (Fig. 5A, 5B), whereas the differ-
ences in ESR1 and PGR expression were minor within the
other subtypes.

HER2E/TN tumors showed a statistically significant
lower expression of HER2/ERBB2 compared to HER2E/
non-TN tumors, with the levels of HER2/ERBB2 expression
in HER2E/TN tumors being similar to the levels observed in
the other subtypes (Fig. 5C). Conversely, expression of
EGFR was found significantly increased in HER2E/TN tu-
mors compared to HER2E/non-TN tumors (Fig. 5D), thus
suggesting that some of the HER2E tumors that are clini-
cally HER2-not amplified may be driven by EGFR; a similar
finding for EGFR was observed within the TCGA data set of
HER2E tumors [25]. Finally, concordant with the similar

Figure 3. Subtype-specific gene expression profiles within triple-negative disease. Each colored square represents the relative mean
genescore foreachsubtype,withhighestexpressionshowninred,averageexpression inblack,and lowestexpression ingreen.Thisgene
list was obtained by performing a three-class (luminal, HER2E and basal-like) significance analysis of microarrays within triple-negative
disease (False Discovery Rate� 0%). On the right, selected genes symbols of several gene clusters are shown, as well as selected gene
ontology biological processes found significantly enriched in each gene cluster.

Abbreviations: AGR2, anterior gradient 2 homolog; APOD, apolipoproteinD; AR, androgen receptor; AURKB, aurora kinase B; BAG1,
BCL2-associated athanogene; CCNB2, cyclin B2; CDH1, E-cadherin 1; ESR1, estrogen receptor; FGFR4, fibroblast growth factor receptor
4; ITGA6, integrin alpha 6; KRT, keratin;MUC1,mucin 1; NEBL, nebulette; PGR, progesterone receptor; PTK6, protein tyrosine kinase 6;
S100, S100 calciumbinding protein; SOD1, superoxide dismutase 1; XIST, inactive X specific transcripts.
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overall gene expression profiles of HER2E/TN and HER2E/
non-TN tumors, genes such as AR and the luminal transcrip-
tion factor FOXA1 were found to be similarly expressed
between TN and non-TN tumors (Fig. 5E, 5F), and with both
luminal and HER2E subtypes at a level significantly higher
than that seen in the basal-like subtype tumors.

Age at Diagnosis of Subtypes Based on Their TN Status
Previous studieshaveshownthatyoungerwomen’sbreast tu-
mors are enriched for more aggressive intrinsic subtypes,
namely basal-like [30]. In our combineddata set, basal-like tu-
mors showedastatistically significant lowermeanageatdiag-
nosis than the rest of subtypes (50.8 years vs. 55.0 years; p�
.0001, normal-like tumors excluded); this was observed to be
true regardless of TN status (50.7 years in basal-like/non-TN
vs. 50.9 years in basal-like/TN tumors; p� .05).

Within TN disease (supplemental online Fig. 3), the mean
age at diagnosis of TN/basal-like versus TN/non-basal-like tu-
mors was found to be significantly different (50.7 vs. 57.1
years;p� .0001, normal-like tumors excluded). Interestingly,
26 of 98 (26.5%) of TN tumors appearing inwomen�60 years
oldwere identified as non-basal-like compared to only 3 of 70
(4.3%) of TN tumors in women �40 years old (odds ratio for
identification of non-basal-like tumors� 8.1, p� .0001).

Independent Evaluation of TN Tumors FromTCGA
The recently reported TCGA Breast Cancer data set offers the
opportunity to interrogate other data types beyond gene ex-
pression, including protein expression using reverse RPPA,
DNA copy number changes, and somatic and germline DNA
mutations [25]. Among90TNtumors in theTCGAdata set, the
PAM50subtypedistributionwasas follows:basal-like (n�78,

Figure 4. Hierarchical clustering of 1,005 tumors froma combined data set using the available PAM50 genes (n� 40 of 50). All samples
have knownestrogen receptor, progesterone receptor, andHER2 status. Triple-negative samples and thePAM50calls are shownbelow
the array tree.

Abbreviation: TNBC, triple-negative breast cancer.

Figure 5. Box-and-whisker plots for expression of selected breast cancer-related genes based on the intrinsic subtype and triple-
negative status. p valueswere calculated by comparingmean values across all groups.

Abbreviation: TNBC, triple-negative breast cancer.

Confidential Pre-Print PDF Thismaterial is protected by U.S. Copyright law. Unauthorized reproduction is prohibited.

5Prat, Adamo, Cheang et al.

www.TheOncologist.com ©AlphaMed Press



87%),HER2E (n�5, 5.6%), luminal A/B (n�5, 5.6%), andnor-
mal-like (n� 2, 2.2%). A summary of the TCGA TN tumor data
is provided in Figure 6, with the top portion devoted to a de-
tailedmolecularanalysisof theTN/non-basal-like tumors (Fig.
6A), and the bottom focused on the overall features of each
subtypewithin TCGA TN cancers only (Fig. 6B).

First, we explored the RPPA data (i.e., 172 proteins) to
identify differentially expressed proteins between TN/non-
basal-like versus TN/basal-like tumors (supplemental online
Table 5). A total of 10 proteinswere identified (unpaired two-
class SAM,FDR�0%); thesixupregulatedproteins inTN/non-
basal-like tumors were AR, PR, ER, cyclin D1, GATA3, and
INPP4B, which has recently been shown to be a tumor sup-
pressor founddeletedandwith lowexpression inbasal-liketu-
mors [31, 32]. Similar to the gene expression data, the
expression of AR in TN/HER2E tumors was found to be similar
toexpression levels innon-TN/HER2Etumors, andhigher than
TN/basal-like or non-TN/basal-like tumors (data not shown).
Finally, the four downregulated proteins in TN/non-basal-like
tumors compared toTN/basal-like tumorswere cyclinB1, ani-
lin,MSH6, and disheveled 3.

Secondly, we explored the DNA mutation data. As ex-
pected, TN/basal-like and TN/HER2E tumors showed the larg-
est number of total somatic mutations (mean number of
mutations � 90.39 and 97.2, respectively) compared to TN/
luminal tumors (meannumberofmutations�43). In termsof
TP53 somatic mutations, 2 of 5 (40%) TN/luminal tumors had
TP53 mutations versus 63 of 74 (85%) TP53 mutations within
TN/basal-like tumors and 6 of 6 (100%) TP53mutations in TN/
HER2E (p� .019,�2 test). In fact, a TP53wild-type TN/luminal
A tumor had aMAP2K4mutation that is typically identified in
ER� luminal tumors. Moreover, BRCA1/2 deleterious muta-

tions (somaticandgermlinemutationscombined)were found
in 16 of 73 (22%) TN/basal-like tumors versus 1 of 5 (20%) in
TN/luminal tumors (which was a BRCA2 germline mutation)
and 0 of 5 (0%) in TN/HER2E tumors. Conversely, somaticmu-
tations inPI3KCA,which is a frequent ER�/luminal tumormu-
tation, were found in 2 of 5 (40%) TN/luminal tumors versus 5
of 74 (6.8%) in TN/basal-like tumors (all 5 samples were TP53
mutated) and 0 of 6 (0%) in TN/HER2E tumors (p � .035, �2

test). Thus, even within TN cancers, the mutation spectrum
observed continued to follow molecular subtype as opposed
to following a common biology possibly laid out by being TN.

Finally, concordant with our results, we observed that all
TN/HER2E tumors did not show overexpression of the HER2
geneor protein, and all TN/HER2E tumors lackedhigh amplifi-
cation of the HER2/GRB7 17q12 amplicon based on the AFFY
SNParraydata. Interestingly, a TN/HER2E tumorwas found to
bea lobular invasive carcinomawith a frame-shiftmutation in
E-cadherin.

Beyond theMain Subtypes of Triple-Negative Disease
Lehmann et al. [11] reported the identification of six molecu-
larsubtypeswithinTNdisease(IM,BL1,BL2,M,MSL,andLAR).
Toexplore the similarities anddifferencesbetween thesemo-
lecularentitiesandthePAM50subtypes, togetherwithour re-
cently identified claudin-low subtype, we performed a
supervised hierarchical clustering using the list of 2,188 genes
by Lehmannet al. on the 224 TN tumors of our combineddata
set (manyofwhichwerealsocontainedwithin theLehmannet
al. data set).

As shown inFigure7A, six toseventumorclusterswereob-
servedand fourmaingeneexpressionclusterswere identified
representing a stromal gene signature (i.e., fibroblast activa-

Figure6. Summarizedmoleculardataof triple-negativetumors fromTheCancerGenomeAtlas (TCGA)dataset [25]. (A):Moleculardata
of the 12 triple-negative (TN)/non-basal-like tumors is shown. (B):Overall data of theHER2E (n� 5), luminal/normal (n� 7), and basal-
like (n� 78) groupswithin TN disease is shown. The PAM50 proliferation scorewas calculated by estimating themean expression of 11
proliferation-relatedgenes. Percentilesof thePAM50proliferation scoreacross theentireTCGAdata set are shown foreach sample. For
reverse-phaseprotein arraydata, low, averageandhighvalues are relative to the logbase2medianexpressionof thatparticular protein
across the entire TCGA data set (��1 expression� low;�1 to�1� average;��1� high).

Abbreviations:AR,androgenreceptor;ER,estrogenreceptor;Mut,mutations;NA,notavailable;PR,progesteronereceptor;PROLIF,
PAM50 proliferation score; ROR, risk of relapse; RPPA, reverse-phase protein array; TN, triple-negative.
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tion protein), a luminal signature (i.e., ESR1, FOXA1), an im-
mune signature (i.e., CD8A), and a basal epithelial signature
(i.e., keratin5and14). The stromal and immunegeneclusters,
which are likely identifying gene expression patterns coming
from themicroenvironment (i.e., invading fibroblasts and im-
mune cells), are critical for the identification of Lehmann’sM,
MSL, and IMsubtypes, respectively (Fig. 7B).Nonetheless, the
PAM50 subtypes were clearly identified, with the vast major-
ity of HER2E and luminal tumors highly expressing the LAR
cluster and the true normals and normal-like tumor samples
highlyexpressing thestromal/fibroblast cluster. Interestingly,
the PAM50-defined basal-like tumors were split into three

main groups based on the expression of the immune-related
genes, the stromal-relatedgenes, and thebasal genes. Finally,
the claudin-low tumorswere found scatteredwithin the large
basal-likegroupof tumorsbasedontheirexpressionof the im-
mune and/or stromal gene clusters.

Overall, this data suggested that the IMandMSL subtypes
aremostly definedby thehigh expressionof genes likely com-
ing from the microenvironment, not from the actual tumor
cells. To explore this hypothesis, we performed hierarchical
clustering analysis using the list of 2,188 genes by Lehmann et
al. [11] and a sample set composed of 230 human breast tu-
mor samples, 20 normal breast samples, 34 in vitro human

Figure 7. Triple-negative (TN) tumors classified by gene signatures from Lehmann et al. [11]. (A): Supervised hierarchical clustering of
224 TN tumors from the combined data set using the centroid gene list from from Lehmann et al. Each colored square represents the
relativemean transcript abundance (in log2 space) for each subtype, with highest expression shown in red,median expression in black,
and lowest expression in green. PAM50 and claudin-low subtype calls are identified below the array tree. (B):Genes from the clustering
in (A) that distinguish each subtype identified in Lehmann et al. Red and green indicate the expression direction (upregulated or down-
regulated, respectively) in each subtype. (C): Supervised hierarchical clustering of 250 breast samples and 37 cell lines representing all
subtypes using the centroid gene list fromLehmannet al. (D):Genes from the clustering in (C) that distinguish each subtype identified in
Lehmann et al.

Abbreviations: AR, androgen receptor; BL1, basal-like 1; BL2, basal-like 2; CAV1, caveolin 1; ESR1, estrogen receptor; FAP, fibroblast
activation protein; IM, immunomodulatory; KRT, keratin; LAR, luminal androgen receptor; LY96, lymphocyte antigen 96;M,mesenchy-
mal;MSL,mesenchymal stem-like; NA, not available.
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breast cancer cell lines, and3humanbreast cancer xenografts
grown in immunocompromised mice, all assayed on Agilent
DNAmicroarrays (Fig. 7C). As expected, the geneswhose high
expressiondefined the IMandMSL subtypes (Fig. 7D), namely
the stromal/fibroblast and immunesignaturegenes,werenot
found expressed in any of the cell line or xenograft models
(Fig. 7C), which is concordant with their expression coming
from the microenvironment (i.e., the microenvironment is
lacking in vitro and is coming from mouse cells for the xeno-
grafts, and which does not hybridize to human DNAmicroar-
rays).

DISCUSSION
In this study, we evaluated a large number of breast cancer
datasetsandmadethefollowingmajorobservationsconcern-
ing TN breast cancers:

1. TNandbasal-likedefinitions shouldnotbeconsideredsyn-
onymous because considerable discordance exists
(�25%).

2. TN disease is a heterogeneous clinical entity composed of
all the intrinsic molecular subtypes, with the basal-like tu-
mors predominating (�70%).

3. TN tumors that are identifiedasnon-basal-like (i.e., HER2E
or luminal A/B) shownearly undistinguishable global gene
expression patterns versus non-TN tumors that are non-
basal-like (i.e., HER2E or luminal A/B).

4. Basal-like tumors that are non-TN show similar genomic
features and an associationwith age at diagnosis as do ba-
sal-like tumors that are TN.

5. Previously described TN heterogeneity in part reflects tu-
mor heterogeneity plusmicroenvironmental heterogene-
ity. Thus, TN disease is a broad and diverse category for
which additional subclassifications are needed.

AgroupofTNtumorsthathasattracteda lotofattention in
recent years is the subset that expresses the AR. For example,
Niemeieretal. [33]evaluatedaseriesof189consecutive inva-
sive breast cancers; 151 (80%) were positive for AR. As ex-
pected, themajority (95%) of ER� tumors were AR�, and AR
positivity was observed in 5 of 8 (63%) ER�/PR�/HER2�
cases andonly in 3of 30 TNcases (10%). ARexpression in ER�
tumorswas associatedwith lower histological grade and apo-
crine histological differentiation—a finding that has also been
observed by other groups [34, 35]. Concordantwith this data,
weobserved thatTNtumorswithhighARproteinand/orgene
expression were usually identified as HER2E or luminal (or lu-
minal AR, according to Lehmann et al.[11]), and their levels of
ARexpression resembled the levels observed inHER2Eand lu-
minal tumors that were not TN. In addition, we have previ-
ously shown that among six apocrine tumors with published
gene expression data, three (50%) were identified as HER2E
and 3 (50%) as luminal [10]. Interestingly, one clinical trial
evaluatingantiandrogens forpatientswithTNtumorswithex-
pression of AR is underway (NCT00972023). In another study
(NCT00468715), 12% (51/424) of TN tumors expressed AR by
IHC, which showed a 21% clinical benefit with bicalutamide
[36]; thus, the overwhelming majority of TN tumors were
AR�.

At first glance, the identification of TN/luminal tumors,
clinically HER2�/HER2E tumors, or non-TN/basal-like tumors

might seem counterintuitive; however, several plausible ex-
planations exist. One possibility is the false positivity or false
negativity of the IHC-based assays for determining the HR or
HER2 status, especially because these pathology-based tests
are challenged by interlaboratory and intermethod discor-
dance rates of�20% [3, 37]. Another possibility is that thepa-
thology and gene expression data could have been obtained
from two different areas of the same tumor, one being en-
riched for HR and/or HER2 expression from tumors cells and
another area enriched for HR� tumors cells (i.e., intratumor
heterogeneity). Although some of the cases evaluated here
from publicly available data might be explained by this possi-
bility, we believe it is unlikely that two different subtypes co-
exist in the same tumor enough to explain this discordance
rate. In fact, we have previously reported that the intraclass
correlationof twoarraysperformedontwodifferentpiecesof
the same primary tumor is�0.90 [13]. In addition, data from
three large clinical trials where both pathology-based assays
and the PAM50 qRT-PCR-based subtype predictor were per-
formed from the same FFPE tumor block in a centralized labo-
ratory suggest that basal-like tumors can be HR� and that TN
tumors can be luminal A, luminal B, or HER2E [9].

Another possibility regarding the discrepancy between
gene expression and IHC-based assays is that gene expression
measuresa largenumberof relatedgenes, comparedwith the
three individual pathology-based biomarkers that define TN
disease. Thus, multigene expression data using tens to hun-
dreds of genesmight better capture the true biological profile
of a given tumor versus three or four individual biomarkers
[38]. For example, a TN tumor that has low levels of ESR1 and
PGR, and consequently is ER�andPR�by IHC,might be iden-
tified as luminal due to the high expression of other luminal-
related genes (i.e., AR, GATA3, and/or FOXA1) and the low
expression of basal- and proliferation-related genes. Another
example comes from the identification of HER2E/TN tumors
that do not amplify/overexpress HER2/ERBB2, some ofwhich
might be driven by high EGFR.

Beyond the four main tumor intrinsic subtypes of breast
cancer, we have recently identified another subtype called
claudin-low [10, 39],which is characterizedby the lowexpres-
sion of tight-junctions related genes (claudin 3, 4, 7) and high
expression of mesenchymal and stem cell-like biological pro-
cesses. The majority of claudin-low tumors were found to be
either basal-like or normal-like byPAM50, andmost showeda
TN phenotype. In addition, claudin-low tumors were associ-
ated with metaplastic and medullary histological differentia-
tion, and lymphocytic infiltration was found in 37% of cases.
Since its identification, many groups have further character-
ized the claudin-low subtype in human tumors and preclinical
models [40–47]. However, its real frequency and clinical rele-
vance are still under investigation.

Lehmann et al. [11] reported the identification of up to six
subtypes within TN disease. Here, we have shown that these
entities largely overlap with the PAM50 and claudin-low sub-
types. However, it is important to note that two of the four
main gene clusters used to identify the Lehmannet al. entities
are tracking biological processes most likely coming from the
microenvironment (i.e., coming from fibroblasts and immune
cells) and not from the actual tumor cells. Concordant with
this, the two in vitro tumor cell lines identified by Lehmann et
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al. as immunomodulatory-like (HCC1187andDU4475) didnot
show expression of the genes whose high expression defines
the immunomodulatory tumor subtype (Fig. 7C). In addition,
despite the identification of six subtypes of TN disease in hu-
man tumors, the classification ultimately used by Lehmann et
al. for classifying the preclinical models of TN breast cancer
was based on three main groups (mesenchymal, basal-like,
andLAR) thatshoweddifferent responses tocytotoxicandtar-
geted therapies. This three subtype classification is very con-
cordant with the three main groups previously identified by
our group (claudin-low, basal-like and luminal/HER2E), and
others based upon cell lines alone (basal B, basal A, and lumi-
nal/HER2�) [48–50]; thus multiple groups and multiple
methods have all arrived at these same three basic subtypes
present within TN disease. The microenvironment clearly
plays a critical role in prognosis [51, 52] and treatment re-
sponse [53]. However, classification of tumors based on non-
tumor features (e.g., thepresenceorabsenceof lymphocytes)
should be considered separately from classifications based
upontumorcell features, asmicroenvironmental featurescan
and do span tumor-based subtypes.

Based upon all of these data, and when discussing TN dis-
ease, we propose that TN breast cancers identified as luminal
or HER2E should be considered as separate entities because
they showadifferent biology (andmutation spectrum) versus
basal-like and claudin-low tumors. In fact, TN luminal and
HER2E are almost undistinguishable, in general terms, from
non-TN luminal and HER2E that are typically ER� or HER2�.
However, whether these TN tumors that are non-basal-like
might benefit from endocrine, anti-HER2 and/or anti-EGFR
therapies, and/or PI3K inhibitors,will need further evaluation
in the clinical research setting (Fig. 8). For example, the
NSABP-B47 trial (NCT01275677) is evaluating the value of
adding adjuvant trastuzumab to chemotherapy in patients
withHER2-normal tumors (i.e., thosewithHER2 IHC1�or2�
tumors without evidence of HER2 gene amplification), which
will include patients with TN breast cancer. The rationale of
this study isbasedon retrospectivedata fromtheNSABP-B-31
trial, inwhich approximately 10%of the patients tested nega-
tive for HER2 positivity when centrally reviewed but experi-
encedthesamebenefit fromadjuvant trastuzumabaswomen
whose tumors were HER2� [54]. Another example is the re-
cently reported BEATRICE trial [55] that evaluated the addi-

tion of adjuvant bevacizumabduring and after chemotherapy
in 2,591 triple-negative breast cancers, but which failed to
show an improved disease-free survival (DFS) rate. However,
a tendency for improved DFS in the bevacizumab arm was
noted (hazard ratio � 0.87, 95% CI: 0.72–1.07), suggesting
that a subset of patients, likely within the basal-like subtype,
might benefit from this drug.

Our findings have very important implications for clinical
trials focusedonTNbreast cancers. For example, clinical trials
focusedonTN tumors couldbepowered todetect differences
in terms of response or survival between basal-like and non-
basal-like disease. However, given the low frequency of TN/
non-basal-like tumors (�25% of TN disease that contains at
least two expression subtypes), it is highly unlikely that any
trial will be powered to see effects within these minor fre-
quencyTNsubtypes.Therefore, trialsmaywish tobepowered
to see treatment effects within all TN tumors and within the
TN/basal-like subset.

Moreover, future studies focusing on TN/basal-like dis-
ease should try to identify new biomarkers within this group
using different data types, such as gene expression, DNAmu-
tations, DNA copy number, methylation profiles, and protein
expression,eitheraloneor incombination.Forexample,Silver
et al. [56] identified a gene signature of the E2F3-related tran-
scription factor thatwasassociatedwith response toneoadju-
vant cisplatin in TN tumors, all of which had a basal-like gene
expression profile. Lastly, it is likely that the immune-cell dif-
ference seen in the Lehman et al. study [11] is important both
clinically and biologically, as others have also shown that the
presence of CD8� T-cells portents a better outcome within
patients with TN disease [57, 58]. With the advancement of
immune-targeted therapies, such as inhibitors of PD-1/PDL-1
[59],andthepresenceof immune infiltrates inmanybasal-like
and claudin-low tumors, it seems like TN disease, and espe-
cially TN/basal-like disease, may be a logical place to first test
these new therapies for patients with breast cancer.

To conclude, TN tumors are a heterogeneous disease
entity and further subclassification is needed. Fortunately,
most classification methods have identified three or four
disease subtypeswithin TNdisease, with the basal-like sub-
type being undoubtedly the most frequently observed
(�75%).Molecular tools, such as gene expression and DNA
sequencing, can help stratify TN tumors, as well as HR� tu-

Figure 8. Proposed algorithmof stratification of triple-negative tumors.
Abbreviations: EGFR, epidermal growth factor receptor; PARP, poly (ADP-ribose) polymerase.
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mors, into more biologically homogenous groups. Future
studies are warranted to determine the potential clinical
utility of the identification of these biological subtypes
found within TN breast cancers.
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